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Abstract

The use of gradient based optimization algorithms in inverse design is well established as

a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to

evaluate the objective function (from the approximate states) and its gradient, then passes this

information to an optimization algorithm. Once the simulation scheme (CFD flow solver) has

been selected and used to provide approximate function evaluations, there axe several possible

approa_ches to the problem of computing gradients. One populax method is to differentiate

the simulation scheme and compute design sensitivities that axe then used to obtain gradients.

Although this blazk-box approach has many advantages in shape optimization problems, one

must compute mesh sensitivities in order to compute the design sensitivity.

In this paper, we present an alternative approach using the PDE sensitivity equation to

develop algorithms for computing gradients. This approach has the advantage that mesh sensi-

tivities need not be computed. Moreover, when it is possible to use the CFD scheme for both

the forwaxd problem and the sensitivity equation, then there axe computational advantages. An

appaxent disadvantage of this approach is that it does not always produce consistent deriva-

tives. However, for a proper combination of discretization schemes, one can show asymptotic

consistency under mesh refinement, which is often sufficient to guaxantee convergence of the

optimal design algorithm. In particular, we show that when asymptotically consistent schemes

are combined with a trust-region optimization algorithm, the resulting optimal design method

converges. We denote this approach as the sensitivity equation method.

The sensitivity equation method is presented, convergence results axe given and the approach

is illustrated on two optimal design problems involving shocks.

*This research was supported in part by the Air Force Office of Scientific Research under grants F49620-92-J-
0078 and F49620-93-1-0280, and by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480 while the second author was a visiting scientist at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

Optimal design problems consist of selecting design parameters for a system in order

to optimize a given design objective, usually constrained to satisfy a partial differential

equation. In many of these problems, design parameters describe the shape of an

object. Examples of these shape optimization problems include drag reduction [21],

[22], weight minimization [14], optimal sensor/actuator placement [6], airfoil design

[16], [17], [18], [19] and the design of wind tunnel elements [15].

Traditionally, approximate solutions of these problems are found by "cut and try"

methods, combining a designer's engineering experience with repeated experimental

testing. This is often expensive, motivating computational methods which compute

the optimal design directly. These methods require defining an objective function

and an appropriate PDE model of the states of the system. A comparison of several

optimal design methods may be found in [13].

Many popular approaches couple a gradient-based optimization algorithm with

function evaluations provided by a proven simulation scheme. One of the disadvan-

tages of these approaches is the expense of computing the gradient. Using finite

differences is often too costly, even if appropriate step sizes can be found and the sim-

ulation scheme can take advantage of "nearby" solutions (as is the case with iterative

solvers for nonlinear equations).

Two strategies for alleviating the computational expense of gradient evaluations

are adjoint variables [17] and design sensitivities [14]. Adjoint methods are advanta-

geous when either the problem is self-adjoint or there are a large number of design

parameters. However, when there are relatively few design parameters, using design

sensitivities, quantities which describe the influence of the design parameters on the

states of the system, is an attractive alternative. In addition to efficient gradient

computations, they can be used in some problems to construct an effective update of

the approximate Hessian for quasi-Newton optimization algorithms, e.g. [10].

A standard approach often used to compute the design sensitivities is based on

(implicitly) differentiating the simulation scheme (for the states) with respect to the

design variables. Using the chain rule to carry out this calculation, results in an

efficient numerical scheme for the sensitivities. The efficiency arises from reusing

many of the quantities computed in the simulation scheme. In fact, the "inversion"

of the system matrix (i.e. the matrix factorization) can often be reused.



A disadvantageof this approachis that for shapeoptimization problems,the dis-

cretization is parameter dependent. Thus, derivatives of the discretization (mesh
sensitivities) are required for each shapeparameter. Depending on the simulation
schemeusedfor the states,determining the discretization can require the solution of
a partial differential equation (as is the casefor finite differencesolutionsof viscous

flow problems [26]). This requires a strategy for computing the meshsensitivities

[20],or for computing an approximation to them [24], [25].

Another approachto finding designsensitivities relieson approximating the par-
tial differential equation, knownasthe sensitivity equation. This equation is obtained

by implicitly differentiating the (infinite dimensional) state equation with respect to

each design parameter. As shown in [2], using the same numerical scheme to ap-

proximate the sensitivity equation which is used to approximate the states, leads to

an efficient scheme with similar computational advantages as the design sensitivity

approach described above. Furthermore, since the discretization is applied directly

to the sensitivity equations, no sensitivity of the mesh is required. The sensitivity

equation is always linear in the design sensitivity, even if the state equation is non-

linear. Since there is no requirement to use the same numerical scheme, it is possible

to gain additional computational savings by using a scheme which takes advantage

of the linearity in the sensitivity equations.

An apparent disadvantage of this approach is that it does not compute consistent

derivatives. In other words, the sensitivity equation approach does not capture the

sensitivity of the truncation errors in the scheme. Thus, there is a concern that

providing an optimization algorithm with an approximation of the gradient of the

infinite dimensional objective function instead of the gradient of the approximate

objective function would cause the algorithm to fail. One might expect, however,

that if the gradients are "close enough" to the true gradients, then the optimization

algorithm should still converge. We show that this convergence can be established if

one combines compatible simulation and optimization schemes.

Trust-region optimization algorithms are constructed to be globally convergent by

minimizing a model of the objective function in a region where the model is "trusted".

This leads to robust algorithms capable of handling inaccuracies in the model. In fact,

convergence results have been given for these algorithms when the model is based on

inaccurate gradient information [7], [8]. The results hold provided the gradients satisfy

a given error condition. Therefore, it is natural to consider an optimal design method



which couplesa trust-region optimization algorithm with gradients computedusing

the sensitivity equation approach.We denotethis combinedsensitivity/trust-region

algorithm by the sensitivity equation method (SEM).

In this work, we present and analyze the sensitivity equation method. The method

can be applied to a wide class of optimal design problems, including those mentioned

above, however, we focus on the particular example of shape optimization of Euler

flows in order to illustrate the method. In the next section, we describe two design

problems. In Section 3, we present the sensitivity equation method including the

trust-region algorithm and the use of the sensitivity equation to find the design sensi-

tivities. Furthermore, we compare various numerical approximations of the sensitivity

equation with approaches based on the discretized equations. Section 4 discusses a

number of convergence issues and includes a convergence theorem for the sensitivity

equation method. In Section 5, we use a one dimensional duct design problem to de-

scribe the implementation of the sensitivity equation approach. Finally, we describe

the implementation and perform shape optimization for a two dimensional forebody

simulator design problem where the steady-state Euler equations are used to model

the state variables.

2 Illustrative Examples

We present two optimal design problems below which are used to illustrate the sen-

sitivity equation method. These problems consist of determining shape parameters

which produce a solution to the Euler equations that matches a desired flow "as

closely as possible." The first problem is motivated by the design of a wind tunnel

element in order to produce a desired flow in the test section. We study a two di-

mensional analogue of this problem. The second problem consists of prescribing the

cross-sectional area of a one dimensional duct to produce a duct flow which matches

a desired flow profile. This problem was used by Frank and Shubin [13] in their study

of optimal design.

2.1 Forebody Simulator Design Problem

The Arnold Engineering Development Center (AEDC) operates a free-jet test facility

which is used for full-scale testing of commercial and military aircraft engines. Engines

are evaluated for performance and safety under various free flight conditions. While
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Figure 1: Forebody Simulator Design Problem

this facility is large enough to house engines, it is not large enough to house an entire

aircraft forebody. Thus, the effect of the aircraft forebody on the engine inlet flow

profile must be simulated. One way of doing this is to replace the actual forebody by

a smaller object, called a forebody simulator (FBS). The use of the FBS is illustrated

in Figure 1. The FBS design problem is to specify the shape of this FBS so that

it produces an engine inlet flow profile which is as close to some desired profile as

possible [15]. The desired profile can be determined by performing either a wind

tunnel simulation or a computational simulation of a model configuration resembling

a test condition of the aircraft engine.

In order to demonstrate the applicability of the SEM, we consider a two dimen-

sional analogue of this problem. This problem, depicted in Figure 2, is to find the

shape of the curve F, which produces an outflow that matches the outflow generated

by the original (longer) forebody as closely as possible. The flow, Q (consisting of the

density p, the momentum pu_ + pv) and the sum of the internal and kinetic energy

E) is modeled using the steady state Euler equations,
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Figure 2: 2D Forebody Simulator Design Problem
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E

(2)

Q = Qi_ at the test cell inflow, (4)

(u,v). _ = 0 add (5)
_a

((u,v). t) = 0 at the walls (no flow penetration), (6)
On

cell domain _(F) subject to the boundary conditions (for supersonic flow):

The pressure P is related to the elements of Q by

P=(7-1)[E-2P(U2+V2)], (3)

where 7 is the ratio of specific heats (7 = 1.4 for air). Given a forebody simulator

shape F, the flow Q(F) is determined by solving the Euler equations (1) in the test



where fi and t are the normal and tangential vectors at the boundary, respectively.

The set of admissible forebody simulator shapes is

.,4---{F E Cl(a,b)] r(a)= r., r(b)= rb andr(x) > r,, vxe (a,b)}. (7)

A statement of the design problem is given below.

Problem 2.1 (Forebody Simulator Design) Let Q be a desired flow at the out-

flow (engine inlet),

s = {(x,y) Ix = b, rb < v < c}. (s)

Define the objective function

where Q(F) represents the solution of (1) with boundary conditions (4)-(6) in the test

cell fl(F). The forebody simulator design problem is to find F. E .A such that

J(V,) _< J(r) for all V Z ,4. (10)

Closed form solutions to (1) with (4)-(6) are available only for special domains.

Therefore, we consider approximate solutions of (1) and hence the approximation of

Problem 2.1.

The discretization is performed by selecting mesh points in the flow domain _(F)

where the flow variables will be approximated. It is desirable to select this mesh

in such a way that the points are more dense in regions where flow gradients are

expected to be "large" (in order to have more accurate differencing) and more coarse

in regions where the flow is nearly constant (in order to save computer time). Other

issues, such as selecting points with no sharp changes in density and with sufficient

resolution to treat the boundary conditions, make the mesh generation a science in

and of itself (see e.g. [26]).

Another constraint on the discretization, to simplify the implementation of a finite

difference scheme, is to use a regular mesh, i.e. a mesh where there exists a bijective

map taking the mesh points to a lattice of points in the computational space. For

example, suppose that .h4 is a C 1 mapping,

-M : (x,y) _ (_,,7), (11)

then derivatives in the physical space are easily approximated on the lattice using

the chain rule. Denoting the Jacobian of the mapping by J_, the transformed Euler



equationsbecome,

where

oP OG
-- + -- = o, (12)
O_ Or1

[o [o1 (13)

Q, = J_IQ, U= _x u -_yv and V=_xx u+_yyv. (14)

A standard finite difference scheme, developed by Beam and Warming [1] is used

to approximate the transformed equations. The scheme introduces a time variable, t

as a means of iterating an initial guess for the solution, to a solution of the steady

state equations. Second and fourth order artificial dissipation terms are added for

stability, represented by _(2) and _(4), respectively. This scheme is implemented

in the PARC2D code [9]. Several implementation issues are discussed briefly below

which are referred to in later sections. Readers interested in more code details or the

actual expressions used for _(2) and k0(4), should consult [9].

The difference scheme produces a system of equations for the update of the flow

variables, A(_ n. Thus, the solution at the nth iteration, (_n is determined from

0 _ = 0 _-1 + Z_0 _-1. (15)

The system matrix produced by the approximation above is quite large due to differ-

encing in each direction. However, this problem is circumvented using an approximate

factorization into a product of two matrices, each corresponding to differencing in one

of the lattice directions. The final system has the form:

[I+_,6_-- _o(,_,+,_,)_j_] ao_:
- &t,_P_ - &t,,O"

÷_,_,(,?- ,_"_,v,)_,(J_oo)

where

= b-o(O ) and = b--_( Q ). (17)
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The subscripted terms _, x7 and A represent the central, backward and forward

difference operators, respectively, in the lattice direction indicated by the subscript.

The converged solution is denoted by QN(x,y)---- O'_. (.M(x, y)).

We introduce Bezier curves to parameterize the forebody simulator. Bezier poly-

nomials possess several nice properties when used in approximations. The most im-

portant for the examples presented here are the convex hull and endpoint interpolation

properties (see e.g. Farin [12]). For this problem, we consider a set of two parameter,

q = (ql, q2), Bezier curves

B = {r e c'[o,11] r(s)= (r,(s),r_(s; q)), r_(s;q) _>r,, s • [0,1],q • IR 2) (18)

where

and

F_(s) = aBo,3(s)+ 0.6B1,3(s)+ 0.8B2,3(s)+ bBa,3(s),

r_(s;q) = raBo,3(s)+ qlSl,3(s) + q2S2,3(s)+ rbB_,3(s),

(19)

(20)

B"_(x)=(r) x'(1-x)_-''i (21)

We also assume a = 0.5 and b = 1.0. We can now introduce the approximate forebody

simulator design problem.

Problem 2.2 (Approximate rorebody Simulator Design) Let {(_i}_:1 be de-

sired flow measurements at S. We assume that the data measurements are given

at the quadrature points, otherwise interpolation must be used. Define the objective

function
g

:f(r) = [ - Q,I:, (22)
i=1

where QN(x_; F) represents the approximate solution to (1) in the domain fl(F) at the

quadrature point xi. The approximate forebody simulator design problem is to find

F. • B such that

j_(r.) < j_(r) fo_all r • s. (23)
Let

Q = {(ql,q2)• ]R2[ r(.; q_,q2)• B}, (24)

then the problem can be equivalently stated as finding (q._, q.2) • Q such that

N 1 2.]_ (q.,q.) __ jN(ql q2) for all (ql,q2) • 2. (25)



2.2 Duct Design Problem

This problemconsistsof designingthe cross-sectionalarea of a one-dimensionalduct

suchthat, under specified inlet and outlet conditions, it produces a flow which is as

close to a desired transonic flow as possible. The governing conservation laws (steady

state continuity, momentum and energy equations) can be reduced to a single two-

point boundary value problem (BVP) for the velocity. It was shown in [13] that the

velocity u, is the solution of

f-_--_f(u) + g(u,A) = O, (26)

u(0) = uin and u(1) = Uout,

where uin and Uout are the velocities at the inlet and outlet of the duct, A is the

cross-sectional area of the duct,

f(u)=u+fl--'u g(u'A)= 1 (ff---x ) (-_A _u _) and -_ 7-17+1, (27)

where/_ and 7 are flow constants taken to be 1.14 and 1.4, respectively. The Rankine-

Hugoniot condition yields the speed of sound as us = "v/H. Unique solutions of this

BVP are guaranteed for monotone area functions, therefore, cross-sectional areas, A,

are restricted to

-4={AECl(O,l) lA(O)=Am, A(1)=Aoutandff----_A(x)>O , VxC(0, l)} (28)

for fixed inlet and outlet areas of Ain and Aout. We now describe the optimal design

problem.

Problem 2.3 (Duct Design) Let 5(.) • L2(0, 1) be a desired transonic flow profile

for the duct and define the objective function by

if(A) = [u(x; A) - z_(x)] 2 dx (29)

where u(.; A) is the solution to (26) corresponding to A. The optimal design problem

is to find an A. E ,4 such that

fl(A.) < if(A) for all A • .4. (30)

While the BVP has a closed form solution [13], we consider approximations of

(26) and consequently of Problem 2.3 in order to study the more general case. We



begin by discretizing the duct length into N cells (of length h = _) with centers,

xj (j_ 1 h " ...,= _) ,3 = 1, N and define u N to be the average velocity in the jth cell,

i.e.

1
uN(A) = -_ J'_-_ u(x; A)dx.

A system of nonlinear equations for uN(A) = --J-{u_Y(A)}N-1

(26) over each cell,

_ h Af(u(xj+h;A)) f(u(xj--_; ))
+g(uN(A),A(xj))

(31)

can be found by integrating

=0, j=I,...,N,

(32)

where it was assumed that &--°AA 0, was nearly constant over each cell. An approxima-
h

tion to u N is found by replacing the fluxes at the cell edges, f (u (xj + "i)), using the

cell center values fj = f(u N) and fi+l = f(u_). Two standard first order "Godunov

type" methods are the Enquist-Osher scheme

(33)

fj+_
f(us)

fj + fj+l - f(us)

N N
uj ,uj+ 1 <us;

N N
Uj ,Uj+ 1 > Us;

N .
U N < Us < Uj+I,

U N Nj+l < u, < uj .

and the artificial viscosity scheme

f u x.i + "_' Fj+I/2 = _ (fj+l + fj- o_(uj+l- uj)), (34)

where a has been selected as 1 for this study. These approximations were used in

[13], but are included above for completeness.

We turn now to the approximation of the cross-sectional area A. The space `4

is replaced by a subset of Bezier quadratic polynomials. The properties of Bezier

polynomials allow us to easily impose both the monotonicity requirement and the

matching of inflow and outflow cross-sectional areas. Consider

/3 = {A E C1(0, 1)IA(x)= ai_Bo,2(x) + qBi,2(x) + AoutB2,2(x);

x E (0,1), q E [Ai.,Aout]), (35)

where B_,, is defined in (21). Thus, B is a one parameter set of curves in ,4. We

restrict our optimization problem to this set B.

Our final step in the approximation of Problem 2.3 is replacing the integral by a

quadrature rule, with the set of quadrature weights and points {(c/, x ai))i= 1. We nOW

state the approximate design problem.

10



Problem 2.4 (Approximate Duct Design) Let " g{Ui}i= 1 represent data for a de-

sired transonic flow profile in the duct. We assume that the data and the approzimate

solution are given at the quadrature points, otherwise interpolation must be used. De-

fine the objective function

g

fiN(a) = _ ci [uN(A) -- fii] 2 (36)
i=1

where uN( A ) is an approzimate solution to (26) with the cross-sectional area A. The

approzimate design problem is to find an A, E 13 such that

JN(A,) < JaN(A) for all m E B. (37)

Note that we can identify any A E/3 with the parameter q E Q -= [Aim Aout] which

uniquely represents it. Thus we can equivalently state the problem as to find q, E Q

such that

Y/(q.) < JT(q) forall q• Q. (3s)

3 Sensitivity Equation Method

3.1 Trust-Region Algorithms

We shall use a trust-region algorithm for the optimization loop. The reason for

selecting this type of scheme will be clear when we discuss the convergence properties

in Section 4. This is a well known algorithm. However, we give a brief description

below in order to prepare for the formulation of the sensitivity equation method.

The quasi-Newton optimization algorithm produces a sequence of iterates which

are obtained by minimizing a local quadratic model of the objective function. This

model is constructed using the evaluation of the objective function ,Fg(qk), its gra-

dient vffg(qk) and a secant approximation to its Hessian, Hk at the current iterate

qk. The minimization of this model produces the next iterate qk+l, i.e.

)mk(qk+l) = minmk(qk_k + sk) = min,k (qk) + vffN(qk) rsk + -_s_Hksk .

Thus the next step is

qk+l = q_ -- HklVffN(qk).

(39)

It is well known that for sufficiently close initial guesses (and assumptions on the

objective function), the iterates converge superlinearly to the minimum, q,.

11



However,the initial guessmay not be in this superlinear region. Thus giobaliza-

tion strategies are employed to bring the iterates into the superlinear region. It is

desirable to choose strategies which reduce to the quasi-Newton algorithm close to

the minimum. One such strategy is a trust-region algorithm. In this algorithm, a

quantity 6, known as the trust-region radius, is used to measure the region in which

the local quadratic model, ink, is "trusted" as an approximation of the actual ob-

jective function, LTd. Thus, the next iterate, qk+l, is now found by minimizing the

model in this region, i.e.

mk(qk+l) = min mk(qk + sk). (40)
II:kll<6k

where 6k is the trust-region radius at the kth iteration.

A heuristic for changing the trust-region radius needs to be developed which in-

creases 6k when the model prediction is good and decreases 8k when the model pre-

diction is poor. One such strategy uses the ratio,

ff_(qk)- ,Y_(qk+l)

Pk = mk(qk) -- ml,(qk+l) (41)

which is the ratio of the computed reduction to the reduction predicted by the model.

If this ratio is small (or negative), then the model did a poor job of predicting _7_

and the trust-region is decreased. Whereas, if the ratio is near 1, then the model did

very well at predicting ff_ and the trust-region radius is increased.

We present the resulting trust-region algorithm below.

Algorithm 3.1 (Trust-Region)

Select an initial guess q0 6 Q, an initial trust-region radius 6o and constants 0 < rll <

r/2 < 1 and 0 < 71 < 1 < 72- Compute J_(q0), V,7_(qo) and select or initialize Ho.

Do k = 0, 1,..., until "convergence"

1. Determine the approximate solution sk to equation (40). We chose the optimally

constrained hook-step method [11] to do this.

2. If pk < r/l, then set 6k+1 6 (0,716k) and qk+l = qk, ,Y_(qk+l) = J_(qk),

VffgN(qk+1) = Vff_(qk) and Hk+l----Hk.

3. Ifr/1< Pk < rl2,then set 6k+i E (0,6k] and qk+l = qk + sk. Compute ff_(qk+1),

V,]'N(qk+l) and the update Hk+l.

12



4. If T/2< Pk, then set *k+l E [Sk, 72gk] and qk+l = qk + sk.

vffN(qk+l) and the update Hk+l.

Continue

Compute jN (qk+l),

3.2 Design Sensitivities

In order to apply a gradient based optimization algorithm, such as the trust-region

algorithm described above, we need to consider methods for computing the gradient

of fiN. In this discussion, we consider finding the gradient of ,7N (or a suitable

approximation) with respect to the single design parameter q. This discussion can be

easily extended to find the gradient of fiN with respect to multiple design parameters.

A straight forward approach is to use a finite difference approximation, e.g.

c3 N ,.7_(q + Aq)- fiN(q) (42)
-_qff_ ( q ) ,_ LXq

Unfortunately, this approach may not be practical for problems where the approx-

imation of the PDE is computationally expensive, and is overly complex in shape

optimization problems due to the necessity of computing mesh sensitivities. One way

of alleviating the computational burden is to use design sensitivities, quantities which

describe the influence of the design variables on the flow variables. For example, we

can directly compute the gradient by differentiating (36) as

g 0 N

_qq_0 N (q)= 2 _--_c_=1 [ug(q) - fii] _qqUi (q). (43)

The quantity _u g _Oug_Y is the design sensitivity for the discretized flow u g.= {.Oq * Ji=l

There are several ways to compute this sensitivity. As above, one might use finite

differences, yielding the approximation

uN(xi; q + Aq) - uN(x,; q)uN(xi; q) '_ Aq (44)

When the discretization is parameter dependent, it is easier to compute this approx-

imation using,

0 N uN(xi + _'M(xl) Aq;q+ Aq)- uN(xi;q)

OqU (xi;q) _ Aq

_xuN (xl; q) _---_Ad(x,) (45)

13



in order to avoid interpolating back to the unperturbed mesh. This approach has the

advantage that it may be possible to select a step size Aq using error estimates for

u n. However, it is as computationally expensive as computing finite differences on

A more efficient approach can be obtained by differentiating the simulation scheme

used to approximate the flow (the discrete sensitivity approach). For example, in

the FBS design problem, the simulation scheme (16) could be differentiated with

respect to q, leading to a numerical scheme for terms like o_u n. Since the chain rule

must be used to carry this out, the resulting scheme for the sensitivities contains

terms similar to those found in the simulation scheme. Thus, the sensitivities can

be computed efficiently along with the flow. A disadvantage of this approach is that

when the discretization is parameter dependent, as in shape optimization problems,

then derivatives of the discretization (terms like _.A4) need to be considered, see e.g.

[90].

An alternative approach is based on differentiating the original flow equation with

respect to the design parameter and then approximating the resulting sensitivity equa-
l" 0 ,_ N,M

tion. The result is _,_u} , where the superscript N refers to the approximation

of the flow equation and the superscript M refers to the approximation of the sen-

sitivity equation. Since this approach interchanges the order of differentiation and

approximation, no mesh sensitivities are required. Furthermore, it has been shown

[2] that applying the same approximation scheme to the sensitivity equation leads to

similar computational advantages as the discrete approach described above. More-

over, additional computational savings could be obtained by applying a scheme which

takes advantage of the linearity of the sensitivity equation. A potential disadvantage
i" 0 ,_N,M

of this approach, however, is that in general _u g # _,_uj , even if the same

approximation scheme is used for both the flow and sensitivity equations.

However, if we consider the gradient of the infinite dimensional objective function,

_q,.7"(q) = 2 fol [u(x; A) - fi(z)] _qU(X; A), (46)

then using the sensitivity equation approach provides an approximation of this gra-

dient, i.e.

___j(q) ,_ ( 0 j_ N,M g [ 0 _ N,Mk_q ]a (q) = 2 _ci (uN(q)- fi,) _qqU)i (q). (47)

Thus, we have reason to expect that this approach could produce feasible gradients

14



for the optimization scheme. These two sensitivity approaches are described in detail

in later sections using concrete examples.

3.3 Sensitivity Equation Method

The sensitivity equation method couples a trust-region optimization algorithm with

gradient evaluations provided by approximating the sensitivity equation. Thus we

consider applying Algorithm 3.1 with the following quadratic model,

Ck(qk+l) = min Ck(qk + s_) = min (qk) + gk sk + -_s k Hksk , (48)II_kll__6k II_kll__6k

Note that we replace the quadratic model mk by Ck to emphasize the fact that Vff N
/ 0 \N,M

is approximated by gk, computed as [_,.7)a (qk).

The intent is to use the robustness of the trust-region optimization algorithm to

compensate for the non-consistent gradients. The result is an optimal design method

which is often more efficient and considerably easier to implement than current meth-

ods. In the sections below, we discuss convergence issues and describe the implemen-

tation of this method.

4 Convergence Issues

Definition 4.1 A numerical scheme is said to produce consistent derivatives with

respect to approximations N (for the states) and M (for the sensitivities) if

J2() - N (') (49)
g

This is exactly the case for the discrete sensitivity approach, since one actually defines
/ 0 \ N,M

(computes)(<J), () tobe_:r_(.).

Definition 4.2 A numerical scheme is said to produce asymptotically consistent

derivatives with respect to approximations N (for the states) and M (for the sensi-

tivities) if

- N _ --,o, Vq• Qo. (50)

is satisfied as the approximations N and M are refined.

We now consider the convergence of the sensitivity equation method. To begin

with, we assume that the following hypotheses hold,

15



(H1) For a given qo in the design space Q, let Qo be an open convex subset containing

the level set of ff_ at qo, i.e.

_< Qo _Q. (51)

(H2) ,.7"N is bounded below

(H3) fff is Frechet differentiable on Qo

(H4) The Frechet derivative of 3"f, denoted by V2_, is Lipschitz continuous on Qo

with Lipschitz constant L, i.e.

IIvJ_(ql) - vJ_(q2) l <_L IIqa- q21 Vql, q2 E Qo. (52)

(H5) The approximate gradient, ga is asymptotically consistent to vffN(qk).

(H6) There exists a constant Cl E (0, 1] such that

c,llgkllllskll_<(--gk,sk) < Ilgkllllskll Vk = 1,2,... (53)

(H7) There exist constants c2, c3 E (0, oo) such that

-c2 (d,d) < (Hkd, d) <_ c3 (d,d) Vk = 1,2,... (54)

The following discussion parallels the proof given in [7] which treats the use of

trust-region algorithms with inexact gradient and function values. This discussion

makes use of the fact that we seek the minimum of jN and have asymptotically

consistent derivatives.

Lemma 4.1

which satisfy

Under assumptions (H6) and (HT), Algorithm 3.1 produces iterates

1 { c, llgklt_ (55)Ck(qk)--Ck(qk+a)> 7c, llgkllmin &, c3 )"

16



Proof Note that since Ck(qk) = ffN(qk),

l (Hksk, sk) (56)!bk(qk) -- !bk(qk+l) = --(gk, sk) -- -_

a.dk, then a.Now, let sk = IlSkl[llskll -- solves

min a(gk, dk) + 1 2(Hkdk, dk) (57)
0<a<6k _a .

We can break this up into two cases, when (Hkdk, dk) >_ 0 and when (Hkdk, dk) < O.

Case 1: Assume (Hkdk, dk) >_ 0, then either

<gk,dk>
a. = ( Hkdk, dk ) '

in which case

Ck(q_)- ¢_(q_+1) (gk,d_) 1 (gk,dk)2 (Hkdk, dk)
- (Hkdk, dk) (gk,dk) -- 2 (Hkdk, dk)2

d _ I _llg_ll_1 <gk,_> >
-- 2(Hkdk, dk)--7 ¢1 C 3

using hypotheses (H6) and (H7), or

in which case

implies

a. -- 6k

(gk, dk)
6k <

(Hkdk, dk)

1

Ck(qk) -- ¢k(qk+l) = --6k (gk, dk) -- 2 _ (Hkdk,dk)

1 1

> -_ <a_,d_>+ _k <g_,d_>> 7c,_llgkll

by hypothesis (H6).

Case 2: Assume (Hkdk, dk) < 0, then a. = 6k- Therefore

Ck(qk) - Ck(qk+l) = --6k (gk, dk) -- 1_ <Hkdk, dk)

1

> -6k <gk, dk) >_ c16kllgkll> _c_6kllgkll.

17



Lemma 4.2 Assume (1"17)holds, then

imply

liminfl]g_ll > 0 and lim 5k = 0 (58)
k--*oo k--*oo

lim (sk,gk) = 1. (59)
Ilskllllgkll

Proof It was shown [111 that, if Ilskll= _k, then the solution to (48) is given by

s(#k), where

= +

and/_k is the unique real number that satisfies ]ls(/_a)]l = 6a. Therefore, if 6a --* 0,

then #a _ cxD (since Ha is bounded, by (H7)). Thus sk _ --It'klgk. /k

Lemma 4.3 Let 3 "N satisfy (HS}, (H4} and (117), then the iterates satisfy

1

[_ba(qk)- _ba(qk+l)]--[ffN(qa)- ffN(qk+a) ] _< _ (c2 q- L)IIskll2- <gk - VffN(qa),sk>.

(Go)

Proof Using the Cauchy-Schwartz inequality and (H3), we obtain

ffN(qk+l)- ,]'N(qk) = f01 <vffN(qk + _sk),sa)d_

= <V,.TN(qa),s_> + fo 1

_< <vffN(qk),Sk> + f01

By the Lipschitz hypothesis (H4),

ffN(qk+l)--ffN(qa)

(V,J'N(qk + )_Sk)- VffN(qk),sk>dA

IVffff (qa + Ask)- Vffff (qa)l IlsklldA.

< <vffN(qa),sk> + folLII)_skHI]saHd)_

= <vffN(qa),sa> + 1LHsa]12.

Thus, using (H7),

<_ -(ga,sk) - -_ (Hksk, sa) + (V,.TN(qa),sa> + LIIsall 2

1

< - (gk - V,)'N(qk),sa> + _ (c2 + L)Ilskll 2

which completes the proof. A
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Lemma 4.4 Assume ,Tff satisfies (H2), (H3) and (H4), and assume (HT) holds,

then V,7 "N is bounded on £o.

Proof Let c be a constant such that jN(q) > c, Vq E Q0 (as guaranteed by (H2)).

Assume to the contrary that there exists a point q 6 f0 such that

N 2vj; > sL(Jf(q0)-c).
Define g = ---

0_

_> =
_> (1- 2) >

a_7 N -fl_ (q), where we choose c_ small enough so that q + _ E Qo. Then

_L (1- 2)[8L (JY(q0)- c)]

This is positive for c_ 6 (0, 2), thus jN(q) > jN(q + _), which implies q + ._ 6 £0. In

addition

JN (_t) -- JN (_t + g) > jN ( qo ) -- c

holds, but this is a contradiction since q and _ + g are in £0. A

Theorem 4.1 Assume jN satisfies (H2), (H3) and (H4). Furthermore, assume the

approximate gradient satisfies conditions (Hh) and (H6) and that the update is con-

structed so that (HT) holds. Then, for a sufficiently fine discretization, the sensitivity

equation method produces a sequence of iterates such that

liminf ]lgkll = 0. (61)
k--_oo

Proof Assume to the contrary that liminfk...oo Ilgkll > 0 and define Ok such that

cos(04- (--gk,sk)
Ilgkllllskll

and wk 6 Q such that

0 sin(Ok) = 0
wk= 1 _)( _llskll+ cos(0k ) sin(Sk ) # 0

Then (gk, wk) = 0 by construction, and
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If sin(o,_)# o, then II_kll= 1 and

= Ibkll(--.Sk

Let K: denote the set of successful iterations, then

cos(0k),,gk,,+ sin(0k)w_
Ilgkll ]

(62)

,.TN(qk)--,J'aN(qk+l)

Pk = Ck(qk)- Ck(qk+l) > rh

for each k E )U. Lemma 4.1 implies

J_(qk)- J_(qk+l) > T gkllmin (Sk,
C3

Since ,7"_ is bounded below, by (H2), the above condition implies limk--._,kejc (Sk = 0.

Therefore, as (Sk is decreased in unsuccessful iterations, limk__._ 8k = 0. We now have

the conditions for Lemma 4.2, and

lim (--gk, sk) _ 1.
k-._ Ibklllbkll

Thus lirn_-_oo cos(0k) = 1 and limk-.oo sin(0k) = 0.

Consider the expression

¢_(qk)- ¢_(q_+,)- (J_Iq_)- J_(q_+,))

1 - p_: = Ck(qk)- Ck(qk+l) '

by Lemma 4.3 and the definition of Ck, we get

1 C_(2 + L)llsk[I2 - (gk - VY_(qk), sk>

1 (H_sk, sk)
1 -Pk <

Using hypothesis (H7),

1 -pk <
1(c2+ L)lb_ll2- (g_- VJf(qk), sk>

Substituting expression (62) and using Hsk[] < gk, we get

1 C --_( 2+ L)_k ¢°_--L(_llakll<gk -- Vff_(qk),gk> <gk -- VffaN(qk), wk> sin(0k)

1 - p,_ _< Ilgkllcos Ok

By Lemma 4.4 and the Cauchy-Schwarz inequality, (Vff_(qk), wk> is bounded and

we consider the limit as k --+oo,

lim 1 - pk = lim (gk- ff_(q_:),gk>
_-._ k-._ IIg_ll2

< Ig/_ -- JN(qk) I

- Ib_ll
2O



Since liminfk--.oo ]]gk[[ > 0 and gk is asymptotically consistent, we can select a suffi-

ciently fine discretization such that

lim 1--pk< l--q2.

Hence, Pk > _/2 which implies 5k+1 > 6k, a contradiction. /k

5 Duct Design Problem

In this section, we use the duct design problem to illustrate the implementation of the

sensitivity equation method. To begin with, we will introduce the discrete approach

for finding design sensitivities in order to compare it with the sensitivity equation

approach.

5.1 Discrete Sensitivities

To obtain an algorithm for the sensitivities O_ug(q)= {O---ug-(q)l, g , the system of
Oq 3 Jj=l

nonlinear equations (32) is differentiated, yielding

C, N A(xj), A(x ) = 0 (63)

where Fj+I/2 is determined by the scheme used to compute the flow. If the Enquist-

Osher scheme was used,

{-fj+l

-EO fJ

FJ+I/2 = 0

fj + fj+l

or if the artificial viscosity scheme was used,

-AV 1 (rj+l. = _ ]_+_

where _ = flu N _uN_
J\ 3 ' aq 3 1'

u_, uN <j+l us;

N .
U 7 ( Us < Uj+I_

U N uN,j+l < Us <

and

Ou, O(IOA_
(U,_q A,_qA)=_qq\A0-xx ] @u _)+(AOA)@+_--_2) Ou

(64)

(65)

(66)

(67)

21



This differentiated scheme can now be used to compute _u N.

5.2 Sensitivity Equation

We now present the implementation for the sensitivity equation approach. We begin

by differentiating the flow equation (26) with respect to the parameter q. Thus

0-

is the sensitivity equation for this problem. Note that the sensitivity equation is a

linear equation with variable coefficients (determined by u). There has been little

analysis of numerical schemes to approximate equations of this type. However, for

this two point boundary value problem, the same numerical schemes (Enquist-Osher

and artificial viscosity) provide convergent algorithms. As in the approximation of

(26), we consider (_u) N to be the average sensitivity in the jth cell. A system of
J

nonlinear equations for (-_qU) N (q) = (-_qU)j (q) can be found by integrating
j----1

(68) over each cell,

h

j = 1,... ,N, where we assume .4 and _A are nearly constant over each cell. As

before, the terms f (u(x i + -_), _u(x i + 3)) are replaced by the cell center values fj

and f3+1. Using the Enquist-Osher scheme, we obtain

and obtain

_

fj+_

- EO L

F;+1/2 = f(u=, (_u),)

h + h+,+ f(u,,

N N
uj , uj+ 1 <_ us;

N .

u N N
j+l < us < uj ,

(71)

1( (72)
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for the artificial viscosity scheme. It is obvious that the approximation of the sensi-

tivity equations depends on the approximation of the flow equations. As described

: O._?2_ N'Mearlier, we use the notation kaq ) to represent using scheme N to approximate

the flow equation and scheme M to approximate the sensitivity equation.

5.3 Convergence Results

The convergence result provided in Theorem 4.1 can be proved for the case when

the artificial viscosity scheme is used to approximate the flow and the Enquist-Osher

scheme is used to approximate the sensitivities in Algorithm 3.1. For this problem,

we assume (the (H1) in Theorem 4.1) that

Q = [Ai_, Aout], ao = (Ain, Aout),

and

Lo={q Q <_ }

The objective function ,:7NAy given above is obviously bounded below (by zero if all

of the quadrature weights are nonnegative) satisfying (H2). The hypothesis (H3), the

differentiability of

i=l

on Q0 and hypothesis (H4), the Lipschitz continuity of the derivative, follow from the

following

Lemma 5.1 The approzimate solution u NAy is differentiable and the derivative is

Lipschitz continuous on Qo.

Proof The approximate solution, u NAy is the root of the nonlinear equations

where F_+v/2 and g are C _° functions of their arguments (for u Nay > 0). Then by the

implicit function theorem, the map

q _ unAv (q)

is Lipschitz continuously differentiable. /k

We point out that the differentiability of the approximate objective functional is

strongly dependent on the discretization scheme used in the approximation. For
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example, the objective functional associated with a Godunov approximation of the

flow is not differentiable, a result of matching a parameter dependent discontinuity on

a discrete set of points [4]. Finding feasible optimization strategies for this problem

has been the focus of recent work, see e.g. [4], [19] and [23]. However, for the

purpose of this discussion, the artificial viscosity scheme provides a smooth enough

approximate objective function.

The hypothesis (H5) is guaranteed (for some discretization level) by the asymptotic

consistency shown below.

Theorem 5.1 For the one dimensional Euler equations, the derivative ( a--_ r]'_ Nav'ME°
\aq_," )9

where the flow is approximated using the artificial viscosity approximation and the

sensitivities are approximated using the Enquist-Osher scheme, is asymptotically con-

el q'Nav
sistent to _,g

Proof Consider the norm used in the definition of asymptotic consistency:

I+
]\aq ], -kOq ]g [

The first term on the right hand side vanishes since using the artificial viscosity

scheme for approximating both the flow and sensitivity equations leads to consistent

derivatives. The last two terms go to zero as the approximations NAy, MAy and MEo

are refined, since the artificial viscosity and Enquist-Osher schemes converge when

used to approximate the sensitivity equation, (_u) N.4v,M*:_ is the exact solution to

the sensitivity equation given u N.av. A

The hypothesis (H6) can be enforced by the optimization algorithm by rejecting

steps which violate this condition and shrinking the trust-region radius. This proce-

dure eventually creates a step which satisfies (H6), since the limit of this procedure

would produce a step in the steepest descent direction.

Finally, (H7) can be enforced by the secant update strategy. Therefore, we have

shown that these approximation schemes satisfy the conditions of Theorem 4.1. Nu-

merical computations using these sensitivity schemes are provided below.
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Figure 3: Design Sensitivity Approximations Using Enquist-Osher Scheme

5.4 Numerical Results

The sensitivity of the velocity with respect to the Bezier parameter, q, is presented us-

ing the numerical schemes described above. For this computation, the cross-sectional

area corresponds to an element of B (see (35)) with q = 1.37125. The interval [0,1]

is divided into 45 cells. In Figure 3, the sensitivity solution using the Enquist-Osher

scheme to compute both the flow u WE° and the sensitivity (_u) yE°'M_° is compared

with the closed form sensitivity solution. In addition, the sensitivities computed

via finite differences of Enquist-Osher solutions using a finite difference step size of

/kq = (1 × 10 -6) q are also provided. Excellent agreement is seen for both of these

methods. The only discrepancy is in the cell to the left of the shock, where numerical

dissipation appears in the flow solution.

The corresponding design sensitivities which are computed using only the artificial

viscosity schemes are shown in Figure 4. As above, the agreement is excellent except

where dissipation errors appear in the flow approximations. In this case, these errors

appear over more cells near the shock.

Note that the computation of these sensitivities were performed efficiently, rela-
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Figure 4: Design Sensitivity Approximations Using Artificial Viscosity Scheme

tive to the cost of a flow approximation. The flow approximation requires solving

a system of nonlinear equations. The sensitivity approximation, on the other hand,

only requires solving a linear system since the sensitivity appears only linearly in the

definition of f and _. Moreover, if the Newton method is used to solve the nonlin-

ear system, then the linear system is already available in factored form. Therefore,

the sensitivities can be computed using less computational time than required for

one Newton step. Computational efficiencies such as this can be missed if the flow

algorithm is simply differentiated.

0 uNote that as long as (_)s is bounded,

2 Thus, one observes that the numerical algorithms to compute ei-since /_ = u s.

there° uN_o or (_qU) NE°'ME° are equivalent. This leads to the fact that using the

Enquist-Osher scheme to approximate both the flow and sensitivity equations pro-

duces consistent gradients. In addition, it is easily seen that using the artificial

viscosity scheme to approximate both equations also produces consistent gradients.
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Table I: A Comparison of Gradients at the Optimum for Various Mesh Sizes

A V

0.011707
0.004800
0.002485
0.002476
0.002645

-0.056521
-0.001566
-0.000012
0.007602
0.026731
0.001584

However, if the artificial viscosity scheme is used to approximate the flow and the

Enquist-Osher scheme is used to approximate the sensitivity equations, the gradients

are not consistent but asymptotically consistent.

Numerical results for this asymptotically consistent case are provided in Table I.

6 Forebody Simulator Design Problem

We now describe the implementation of the sensitivity equation method for the fore-

body simulator design problem described in Section 2. As in the duct design problem,

we begin by presenting the equations which comprise the discrete sensitivity scheme

in ozder to compare and contrast the two methods. Unlike the duct problem, we

have no theoretical convergence results for the FBS design problem. However, the

numerical experiments below show that the SEM still converges.

6.1 Discrete Sensitivities

Differentiating the numerical scheme (16) with respect to a design parameter, repre-

sented by q, leads to the following scheme:

[I + Atg, fi._- V,(_2) + _4))AeJ_ ] x

q

[z+ At, , o- v,(¢(:)+ AOo
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+ z_tv_(,_2)- ,_%_v_)A_q(_-)

(74)

NoteThe equation representing the boundary conditions are also differentiated.

that the above sensitivity scheme requires derivatives of the mapping, _M (denoted

as mesh sensitivities) and the dissipation terms, _,(2) and 0,(4). Evaluation of
q

_.A4 is given by differentiating the scheme which determines .A4, see e.g. [20]. Other

methods for approximating _Ad have also been investigated, see e.g. [25]. We see

from (74) that terms containing these expressions represent a significant portion of

the computational effort, aside from the fact that _qA4, _*(2) and _*(4) themselves
need to be determined.

6.2 Sensitivity Equation

The sensitivity equation approach to computing design sensitivities is presented be-

low. To begin with, we differentiate the Euler equations and associated boundary

conditions with respect to the design parameter q, which leads to:

cOFq OGq
0----_+ cOy -- 0 (75)

cO
F_= _uQ + _Q,+

(J(/

0
Gq = -w:vQ + vQq +

uq

0

a_p
Oq

0

_Pu + P_u

I 0

0

_Pv + P_v

, Qq =

where

_P

_(p.) '
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and where

Oqu = _(Pu) - Oq p j/p and _v = _(pv)- _PTJ/p'

since p _ 0.

We are now free to apply any appropriate scheme to solve (75). In particular, it is

possible to use a method which takes advantage of the linearity of the sensitivity equa-

tion. However, in this work, the same scheme used to solve the flow equations is used

to approximate the sensitivity equations, which leads to an efficient computational

scheme as in the discrete approach [2]. This scheme is described below.

This equation may now be transformed to generalized coordinates, so that the finite

differencing can be done more easily. It makes sense to use the same transformation

(which is equivalent to using the same mesh) that was used in the solution of the

Euler equations. Thus the resulting system is

0-'-( + 0---_-= 0, (76)

where

ff'q = U(Oq + UqO + _---_PJ_ 1

o_ = voq + v_O,+ _qpJ;J

where

and

U = V_. (u,v) and

V = Vr/. (u,v) and

It can be shown that

0 0

+pjzi 0
0

0y

v vq

° I°On

+pj_ o
0

Oy

v _

"Ou, 0 vv_= v_.(_ _),

OuO

A and D

00 OGq

OQ OQq'
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so that the discretization has the same factored form as the Euler equations, thus

+ _ + ×

- ,at6_(p_)"- _t,_,_(_),_

+,_tv_(_,__)- _%_v_)_x_(J_O)"
+ AtV,(_(_) - _(')A,V,)A,(J_)) _ (77)

Since the left hand side matrices are the same, a right hand side vector needs to

be formed for each design sensitivity. In addition, the boundary condition type is

the same for both the Euler and sensitivity equations. The boundary conditions are

determined using implicit differentiation.

Note that this scheme is similar to the discrete sensitivity approach. However, since

the approximation is applied after the differentiation, there are no mesh sensitivity

or dissipation sensitivity terms. The other obvious difference is that the boundary

condition on the parameter dependent boundary is different.

6.3 Boundary Conditions

The boundary conditions for the sensitivity equation (75) are provided below for the

case where the forebody simulator is described by a two parameter Bezier curve (18)-

(20). Extensions to other forebody descriptions will be obvious. The appropriate

conditions are obtained by differentiating the corresponding boundary conditions for

the Euler equations. For example, at the inlet, the flow Qm is prescribed and will not

vary as the forebody parameters q = (ql, q2) are changed, thus

at the test cell inflow. The walls are treated in a similar fashion. However, the

boundary condition at the forebody simulator surface requires more attention. This

is because the points where the condition is evaluated are parameter dependent.

We study the treatment of condition (5) in detail. The normal vector to the

forebody surface is
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Thus, the boundary condition (5) can be written as

O--F (s;q)+v(r,(s),r_(s;q);q) Or,(s)=O. (79)-u (r_(s),r_(_;q);q)0s _

The corresponding sensitivity equation boundary condition for the first parameter,

ql, can be obtained via differentiation, i.e.,

0 (rx(s),r_(_; q); _O0 _qiv0 q)Orx(s )q)o r_(_;q)+ (r_(.;q),r.(s); =

0

02
+ u (r=(_), r_(_; q);q) 0--_q_r_(_; q)

_o__ (r=(_),r_(_;q);q) o__r_(s;q)Or_(_).Oy v

This is simply a nonhomogeneous version of condition (5), namely,

/ r3 Or\ 0 c3 O 02 0 O O
U,_q_) •_= Nu_r_Nr_ +_o--_¢r_- Nvg_iCr_Nr.. (so)

Using the same techniques, the boundary conditions corresponding to (6) are:

O { r_ ' 02 0 0 0 02 02 0 0

0--;[o--_)ut - oxoy_Nr_Nr_ + _o--_q _r_ oy_U'o-_q_r_Nr_'
0/o, 0_ 0 0 0 0_ _ o_ 0 o

The analogous boundary conditions for q2 are obvious.

6.4 Numerical Results

The sensitivity equation approach, which computes design sensitivities for the two

dimensional Euler equation is illustrated below. In this implementation, a right hand

side vector for each design sensitivity is formed along with the corresponding vector

for the flow approximations. The updates for the flow and sensitivity variables are

obtained simultaneously, exploiting the fact that the left hand side matrices are the

same.

The design sensitivities with respect to the first Bezier parameter ql were computed

for a forebody described by the curve

= (_:(8),_)(s)), s E [0, 1],
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where

$(s) = O.OBo,3(s) + 0.1B1,3(s) + 0.55B2,3(s) + 1.0B3,3(s),

= raB0,3(s) + qiB1,3(s) + q2B2,3(s) + rbB3,3( ),

ql = 0.1, q2 = 0.15, F_ = 0 and Fb = 0.2. This curve is twice as long in the x-direction

as the admissible forebody simulators given in B (see (18)). Under a uniform inlet

flow profile described by the inlet Mach number, M_ = 2.0, the approximate flow

variables and sensitivities are computed on a 43 x 49 mesh. The sensitivity of the

x-component of momentum with respect to the Bezier parameter ql, computed using

the sensitivity equation approach and the finite difference approach (for 4 different

step sizes) are plotted along the outflow plane in Figure 5. The corresponding plots

for the Energy sensitivity are provided in Figure 6. Observe that the step size of

0.00001 produces noisy sensitivity values close to the forebody (presumably due to

round-off errors). A larger step size of 0.01 gives the best results (when compared

to the sensitivity equation approach) near the shock location. The best qualitative

behavior appears when the step size is 0.001. These figures demonstrate the difficulty

of obtaining a satisfactory step size at all resolution levels in the flow domain.

A model forebody simulator design problem is discussed below. To begin with,

we seek the optimum value of the inlet Mach number and two Bezier parameters

( (ql, q2), describing a shortened forebody simulator in the admissible set B) which

minimize the approximate cost functional jN (given in equation (25)). The flow

data Q to be matched is given by the flow QN corresponding to the forebody shape

f" described above. We point out that the artificial dissipation in the flow solver

produces a "smearing" effect on the flow variables. Therefore, based on the results

for the duct design problem, we expect a sufficiently smooth approximate cost func-

tional. Furthermore, the comparison of the sensitivities in Figures 5 and 6 lead us to

believe that the sensitivity equation approach may produce asymptotically consistent

derivatives.

The sensitivity equation method was applied to the FBS design problem with

initial values of the parameters: M, = 2.0, ql = 0.10 and q2 = 0.15. These parameters

correspond to those used to generate Q (even though that forebody is longer). We

present the iteration history in Table II. Observe that there is a drastic reduction

in the approximate cost functional in the first three iterations. The iteration history

for the z-component of momentum is given in Figure 7. Note that the front end of
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Table II: Shortened Forebody Optimization

Iteration M, ql q2 Cost Functional Gradient

0

1

2

3

4
5

6

7

8

9

10

11

12

2.00000

2.00108
2.01054

2.00897

2.01027

2.01307

2.01670

2.01900

2.01940

2.01936

2.01952
2.01994

2.02006

0.10000

0.14608

0.26846

0.30765
0.30139

0.29367

0.28891

0.29011

0.29278

0.29420

0.29439
0.29417

0.29415

0.15000

0.17177

0.14152

0.13671

0.14007
0.14737

0.15564

0.15921

0.15821

0.15669

0.15604

0.15603

0.15609

3.2339

1.6000
0.3332

0.2334

0.2306

0.2289

0.2271

0.2249

0.2237

0.2232

0.2230
0.2229

0.2229

27.1283

11.6285

3.7955

0.4621

0.5963
0.6861

0.5009

0.1513

0.0576
0.0571

0.0275

0.0173

0.0153

the forebody simulator becomes more blunt during the first two iterations in which

a stagnation region is set up in front of the FBS. This has the effect of moving the

shock forward, which comes close to the shock location created by the long forebody.

The remaining iterations are used to "fine tune" the solution near the FBS. The

comparison of the optimal forebody simulator to the flow generated by the long

forebody is displayed in Figure 8. Notice that the shock location is the same in both

l_ows.

In the optimization above, the initial Hessian was computed using forward dif-

ferences. This adds some initial expense in the hope for fewer iterations. However,

without this technique, using the identity matrix as the initial Hessian, the iteration

converged in fifteen iterations. Therefore, neither technique showed an advantage.

6.5 Conclusions

While no rigorous proof of asymptotically consistent gradients has been shown for

Euler equations, numerical evidence in [3] suggests that the gradients may indeed

be asymptotically consistent. Similar numerical evidence exists for finite element

approximations of the Navier-Stokes equations [5].
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Final Converged Solution Original Long Forebody (data to be matched)

Figure 8: Comparison of Optimal Solution with Data
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